
Pretty Frecking Strong Encryption
Louis Cordier <lcordier@gmail.com>

6 September 2009

Abstract— In this paper I’ll show that we can address the key
distribution problem of one-time pads in a viable and practical
manner. Instead of distributing a key, we will (publically)
distribute a recipe to make a key. The two parties communicating
will have shared prior knowledge of a secret ingredient used in the
construction of the key. The attacker, armed with only knowledge
of the cipher-text and the recipe, will have to guess the secret
ingredient. I will then show that the secret-ingredient-space is
with all likelihood in the order of aleph-null.

I. INTRODUCTION

In 1917 Gilbert Vernam invented the one-time pad [1], later
Claud Shannon showed it had a property of perfect secrecy.
For this to work, it is vital that the keystream values (a) be
truly random and (b) never be reused [2]. Additionally, the
keystream must be as long as the data to be encrypted and
has to be shared securely with the recipient. Sharing the key
stream securely is known as the Key Distribution problem [3].

II. ASSUMPTIONS

We will assume all clear text messages will always be
compressed at the maximum compression ratio to increase
message entropy.

III. KEY RECIPES

A key recipe will be a string that references public resources
(ingredients) and specify the size of the key to be created.
Recipies can be encoded in any language, obfuscated in any
format. However, we will assume the attacker will always
know the format and language in which recipies are encoded,
and always have access to all recipes.

A. URL Recipe

For my first recipe encoding scheme, I decided to stick to
plain URLs. In general we will use the fragment of an URI. In
RFC3986 section 3.5 [4] — a fragment identifier component
is indicated by the presence of a number sign (“#”) character
and terminated by the end of the URI. Thus we can embed
URLs (without fragment sections) into the fragment section
of an URI. These URLs can be delimited with a number sign
(“#”). For example, an URL encoded recipe could look like:
• http://www.google.com/#http://example.
com/ingredient1#http://example.com/
ingredient2

This recipe can then be obfuscated using URL-shorteners, for
example tinyurl and bit.ly. Thus the example recipe would now
look like:
• http://tinyurl.com/nhzyue
• http://bit.ly/NKsoX

If we always use the same URL-shortener (even privately
controlled ones), we simply have to send the last 5 characters.
We could SMS it, tweet it, hide it [5], [6], [7], morse code it
or even publish it as a coupon code in a newspaper ad.

B. Email Recipe

Email recipes can be written in natural languages wich
will make automated techniques to parse them difficult. For
example:

From: Bob <bob@example.com>
To: Alice <alice@example.com>

Here is a nice article you might like.
http://www.example.com/recipe.html
Use the first two images on the page as
your ingredients, and that hot image
of you at summer camp as the secret
ingredient ;).

Regards, Bob.

IV. KEY INGREDIENTS

Ingredients can be thought of as data, sampled in an
endless loop. The loop is not really infinite, it just loops until
we gathered enought values to construct the required length
key. Ingredients can also be code or algorithms that generate
values, PRNGs [8] for example.

Progression of a Lisp programmer — the newbie
realizes that the difference between code and data is
trivial. The expert realizes that all code is data. And
the true master realizes that all data is code.

A. Conditional Access Ingredients

Since ingredients will most likely be stored on public
webservers, we could implement features like access control.
Think of an AppEngine application that returns a file of
requested size, N . The file is dynamically created as the first
N outcomes of an PRNG, optionally modulated by some
algorithm/state-machine, seeded with the requesting machine’s
IP address. If Alice is constructing a key and requesting her
ingredients over SSL the attacker will have to request his own
set of ingredients. If the public webserver shows stats of how
many times resources have been accessed, Alice can tell if
an attacker is trying to construct her key. An example of this
would be to see how many people accessed our recipe.
• http://bit.ly/info/NKsoX

http://www.google.com/#http://example.com/ingredient1#http://example.com/ingredient2
http://www.google.com/#http://example.com/ingredient1#http://example.com/ingredient2
http://www.google.com/#http://example.com/ingredient1#http://example.com/ingredient2
http://tinyurl.com/nhzyue
http://bit.ly/NKsoX
http://bit.ly/info/NKsoX


B. The Secret Ingredient
Ingredients can be both data and code. The secret

ingredient, the one only Alice and Bob knows, should ideally
be some algorithm. This algorithm takes a keystream Ki,
constructed from the ingredients listed in the recipe and
mutates, transforms or transcode it into our final keystream
K ′i. K ′i is the keystream we use to encode and decode
our message. The attacker will have to determine a secret
algorithm of arbitrary complexity. To make things even
more difficult, within each message we can include a new
secret ingredient (algorithm) to be used in the response
message. These algorithms can be general functions with sets
of parameters that control their behaviour. The controling
parameters can then be selected at random within bounds.
Here is a few example secret ingredients:

1) Simple Function: Our secret ingredient is the function
F such that K ′i = F (Ki). Where: K ′i = (Ki + 3) MOD 255
when i even and K ′i = (Ki + 5) MOD 255 when i is odd.
The function F is secret, but it is also in a general form with
the parameters (3,5) that we could have chosen at random. So
instead of sending a new secret function F in each message,
we could simply only send new contol parameters.

2) PRNG: In this case our secret ingredient is a function
that interacts with a PRNG, lets say Mersenne Twister. We
seed it with an secret parameter s and we ignore the first
n outcomes. Then F is the function such that K ′i = Ki ⊕
MT (s)i+n where MT is the Mersenne Twister with outcomes
bound to the bit-width of Ki.

V. KEY CONSTRUCTION

OTPs require that the key be of the same length as the
original message. For a 1TB message we will need a 1TB key.
Thus a length-limited recipe must be turned into an arbitrary
length key. Think of this as an inverse-one-way-hash function,
given a hash (recipe) it will return the minimum-sized data that
will produce that hash (desired key). Constructing a key is the
process of mixing ingredients in their various quantities, and
then altering the mixture in some way (baking it) to produce
the final result.

A. Mixing Ingredients
The easiest way to mix ingredients would be to cyclicly

multiplex them. For fixed length data, put it in a circular buffer
of the same size as the data. Then to generate the intermediate
keystream Ki simply select, in a cyclic ordered fasion, values
from each ingredient buffer. Thus we have a length-unlimited
keystream.

If the ingredient is an algorithm, simply pass it an unlimited
time-series as input. For example the sequence 1, 2, 3, . . .

If our secret ingredient is data instead of an algorithm, say
an image taken on a digital camera when Bob and Alice are
together, we could multiplex it with our other ingredients. We
then wouldn’t need to alter the keystream further, K ′i = Ki.

B. Baking The Mixture

Since the attacker has our recipe, he can with all likelihood
always construct the intermediate keystream Ki. It is therefore
vital that we alter Ki in some secret way to produce our key
K ′i. We require that it MUST be computationally unfeasible
for the attacker to find our secret. To that end we choose an
arbitrary algorithm to mutate Ki into K ′i. I would venture
to guess that there are at least as many possible algorithms as
there are integers and way more than Prime numbers. Thus my
secret ingredient search space is at least of the order Aleph0.

We can write it as equations:

Ki = Mux(I1, I2, . . . , In, i) (1)
K ′i = F (Ki, i, . . .) (2)

Which states the intermediate keystream Ki is the multiplexed
ingredients I1, I2, . . . , In, and the final keystream K ′i is the
result of a mutation function F , our secret ingredient, acting
on the intermediate keystream.

VI. CONCLUSION

I have shown that the key distribution problem could
trivially be addressed with the (public) distribution of key
generation recipes and a shared secret. The shared secret could
be data or an algorithm and its size extremely small compared
to the message to be encryptred. I also showed a protocol
where new shared secrets get distributed with each message,
to be used in the response of that message. Thus to establish
and maintain perfect secrecy you only need to distribute one
small secret. That secret could be obfuscated [5] and hidden
[9] in physical “unbreakable” objects, couriered around the
world.

This leaves us with a moral dilemma. Should this genie be
left out of the bottle? I could patent it in such legal speak that
no one could implement it, and then sell various hardware
solutions to governments to be used by their agents in the
field. If I don’t release this, someone else is bound to come
up with a similar solution. Should the public, terrorists and
pedophiles have perfect secrecy?

REFERENCES

[1] G. Vernam. (1917) One-time pad. [Online]. Available: http://en.wikipedia.
org/wiki/One-time pad

[2] B. Schneier. (2009, September) The History of One-Time Pads and the
Origins of SIGABA. [Online]. Available: http://www.schneier.com/blog/
archives/2009/09/the history of.html

[3] Key Distribution. [Online]. Available: http://en.wikipedia.org/wiki/Key
distribution

[4] T. Berners-Lee, et al. (2005, January) Uniform Resource Identifier (URI):
Generic Syntax. [Online]. Available: http://www.ietf.org/rfc/rfc3986.txt

[5] 42 ways to distribute DeCSS. [Online]. Available: http://decss.zoy.org/
[6] Steganography. [Online]. Available: http://en.wikipedia.org/wiki/

Steganography
[7] Spread Spectrum. [Online]. Available: http://en.wikipedia.org/wiki/

Spread spectrum
[8] Pseudorandom Number Generator. [Online]. Available: http:

//en.wikipedia.org/wiki/Pseudorandom number generator
[9] The Hunt for the Kill Switch. [Online]. Available: http://www.spectrum.

ieee.org/semiconductors/design/the-hunt-for-the-kill-switch/0

http://en.wikipedia.org/wiki/One-time_pad
http://en.wikipedia.org/wiki/One-time_pad
http://www.schneier.com/blog/archives/2009/09/the_history_of.html
http://www.schneier.com/blog/archives/2009/09/the_history_of.html
http://en.wikipedia.org/wiki/Key_distribution
http://en.wikipedia.org/wiki/Key_distribution
http://www.ietf.org/rfc/rfc3986.txt
http://decss.zoy.org/
http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Steganography
http://en.wikipedia.org/wiki/Spread_spectrum
http://en.wikipedia.org/wiki/Spread_spectrum
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://www.spectrum.ieee.org/semiconductors/design/the-hunt-for-the-kill-switch/0
http://www.spectrum.ieee.org/semiconductors/design/the-hunt-for-the-kill-switch/0

	Introduction
	Assumptions
	Key Recipes
	URL Recipe
	Email Recipe

	Key Ingredients
	Conditional Access Ingredients
	The Secret Ingredient
	Simple Function
	PRNG


	Key Construction
	Mixing Ingredients
	Baking The Mixture

	Conclusion
	References

